Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1).

نویسندگان

  • P F Dijkers
  • R H Medema
  • C Pals
  • L Banerji
  • N S Thomas
  • E W Lam
  • B M Burgering
  • J A Raaijmakers
  • J W Lammers
  • L Koenderman
  • P J Coffer
چکیده

Interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor regulate the survival, proliferation, and differentiation of hematopoietic lineages. Phosphatidylinositol 3-kinase (PI3K) has been implicated in the regulation of these processes. Here we investigate the molecular mechanism by which PI3K regulates cytokine-mediated proliferation and survival in the murine pre-B-cell line Ba/F3. IL-3 was found to repress the expression of the cyclin-dependent kinase inhibitor p27(KIP1) through activation of PI3K, and this occurs at the level of transcription. This transcriptional regulation occurs through modulation of the forkhead transcription factor FKHR-L1, and IL-3 inhibited FKHR-L1 activity in a PI3K-dependent manner. We have generated Ba/F3 cell lines expressing a tamoxifen-inducible active FKHR-L1 mutant [FKHR-L1(A3):ER*]. Tamoxifen-mediated activation of FKHR-L1(A3):ER* resulted in a striking increase in p27(KIP1) promoter activity and mRNA and protein levels as well as induction of the apoptotic program. The level of p27(KIP1) appears to be critical in the regulation of cell survival since mere ectopic expression of p27(KIP1) was sufficient to induce Ba/F3 apoptosis. Moreover, cell survival was increased in cytokine-starved bone marrow-derived stem cells from p27(KIP1) null-mutant mice compared to that in cells from wild-type mice. Taken together, these observations indicate that inhibition of p27(KIP1) transcription through PI3K-induced FKHR-L1 phosphorylation provides a novel mechanism of regulating cytokine-mediated survival and proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D.

The FoxO forkhead transcription factors FoxO4 (AFX), FoxO3a (FKHR.L1), and FoxO1a (FKHR) represent important physiological targets of phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB) signaling. Overexpression or conditional activation of FoxO factors is able to antagonize many responses to constitutive PI3K/PKB activation including its effect on cellular proliferation. It was previou...

متن کامل

Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells.

OBJECTIVE Vascular endothelial growth factor (VEGF) is a potent angiogenic growth factor that promotes endothelial cell (EC) survival, migration, and permeability. The forkhead transcription factors FKHR, FKHRL1, and AFX are mammalian orthologues of DAF-16, a forkhead protein that controls longevity in Caenorhabditis elegans. In this study, we examined whether VEGF is coupled to phosphatidyl in...

متن کامل

Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors.

AFX-like Forkhead transcription factors, which are controlled by phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, are involved in regulating cell cycle progression and cell death. Both cell cycle arrest and induction of apoptosis are mediated in part by transcriptional regulation of p27(kip1). Here we show that the Forkheads AFX (FOXO4) and FKHR-L1 (FOXO3a) also directly c...

متن کامل

Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors.

Recently, the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors has been identified as direct targets of phosphoinositide 3-kinase-mediated signal transduction. The AFX (acute-lymphocytic-leukaemia-1 fused gene from chromosome X), FKHR (Forkhead in rhabdomyosarcoma) and FKHR-L1 (FKHR-like 1) transcription factors are directly phosphorylated by protein kinase B, resulting ...

متن کامل

Vav1 promotes T cell cycle progression by linking TCR/CD28 costimulation to FOXO1 and p27kip1 expression.

Vav proteins play a critical role in T cell activation and proliferation by promoting cytoskeleton reorganization, transcription factor activation, and cytokine production. In this study, we investigated the role of Vav in T cell cycle progression. TCR/CD28-stimulated Vav1(-/-) T cells displayed a cell cycle block at the G0-G1 stage, which accounted for their defective proliferation. This defec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 20 24  شماره 

صفحات  -

تاریخ انتشار 2000